
Z-Wear PM Data Sheet Tooling Alloys

zapp

Zapp is certified To ISO 9001

Chemical composition

1.15 %
7.50 %
2.40%
1.00%
1.60%

Description

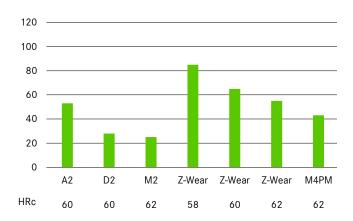
Z-Wear PM is a powder metallurgy tool steel intended to provide high value and exceptional versatility. It offers wear resistance superior to standard A2 and D2 grades along with high toughness and resistance to chipping. This unique combination of properties allows consistent and reliable tool performance in a broad range of cold work applications. Z-Wear is designed to be "user friendly" and exhibits excellent machinability, heat treat response (up to HRc 64), and grindability. It maintains a high degree of dimensional stability and can serve as an ideal substrate for a variety of common tool coatings and surface treatments.

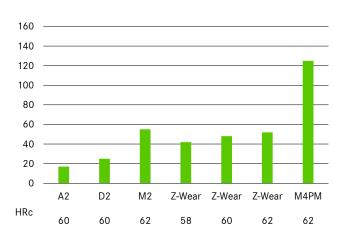
Typical applications

- general tool and die
- stamping and forming tools
- punches
- thread rolling tools
- fine blanking tools
- shear blades
- o tooling for plastic processing

Physical properties

Modulus of elasticity E [psi x 10 ⁶]	30
Density [lb/in³]	0.277
Thermal conductivity at 72 °F [BTU/hr-ft-°F]	13.5
Coefficient of thermal expansion over temperature range of 100 - 1000 °F [in/in/ °F]	6.25 x 10 ⁻⁶


Powder metallurgical and conventional microstructure



The uniform distribution of carbides in the powder- metallurgical structure compared to conventional tool steels with big carbides and carbide clusters.

Relative toughness

Relative wear resistance

Thermal Processing

Annealing

Heat uniformly in a protective atmosphere (or vacuum) to 1600°F (870°C) and soak for 2 hours. Slow cool 30°F (15°C) per hour until 1000°F (540°C). Parts can then be cooled in air or furnace as desired. Hardness expected is BHN 225-248.

Stress relieving (soft)

Heat uniformly to 1100-1300°F (595-700°C), soak for 2 hours, and cool in air or furnace.

Hardening

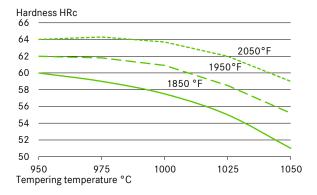
Vacuum, salt, or protective atmosphere methods are generally used. Care must be taken to prevent decarburization.

Preheat

Heat to 1500-1550°F (810-845°C) until temperature is equalized. Additional preheat steps including 1200-1250°F (620-650°C) and at 1700-1750°F (930-955°C) are suggested when using programmed control during vacuum processing.

Austenitizing

Temperatures in the range of $1850^{\circ}F$ ($1010^{\circ}C$) to $2050^{\circ}F$ ($1120^{\circ}C$) are commonly used with the specific temperature and soak time determined by the hardness required. Higher hardening temperatures will provide maximum wear resistance and hardness while temperatures lower in the range will provide increased toughness. Refer to chart for further information.


Quenching

Methods include use of high pressure gas (minimum 4 bar preferred), salt bath, or oil. Quench rate from the hardening temperature range down to 1300°F (700°C) is critical to the development of optimum structure and properties. Part temperature can then be equalized at 1000-1100°F (540-595°C) after which cooling can continue to below 150°F (66°C) or "hand warm". Step quenching in this manner will help to minimize distortion in larger section sizes.

Tempering

Tempering should be performed immediately after quenching. Temperatures in the range of 1000°F (540°C) to 1050°F (595°C) are generally used depending on the hardness required. Heat uniformly to the selected temperature and soak for 2 hours. Double tempering is absolutely necessary while triple tempering is recommended when hardening at 1950°F (1093°C) and over. Tempering temperatures of less than 1000°F (540°C) should not be used, and care must be taken to cool parts fully to room temperature between each temper.

Tempering diagram

Heat treatment instructions

1st preheating	1200-1250°F	
2nd preheating	1500-1550 °F	
Hardening	as specified in table	
Tempering	2 x each 2 hours as specified in table	

Preferred quench method is high pressure inert gas (minimum 4 bar) or molten salt at 1025°F.

Required hardness HRc	Austenit- izing soak temp [°F]	Austenit- izing soak time [Min]*	Tempering tempera- ture[°F]**
57-59	1900	45	1000
58-60	1950	30	1015
59-61	1950	30	1000
60-62	1975	25	1000
61-63	2000	20	1000
62-64	2050	15	1000

Process variation and part section size can affect results. Soak times should be based on actual part temperatures. Use of load thermocouples is highly recommended during batch processing.

^{**}An increase in tempering temperature by 15°F can be used to reduce hardness 1 to 2 points HRc. Tempering temperatures less than 1000°F should not be used.

Stress relieving (hard)

Heat to 25°F (15°C) less than the temperature of the last temper and soak for 1 hour.

Critical temperature

1545°F (840°C)

Size change during hardening

+.0005 in/in (at HRc 60)

Surface treatment

Straightening

(430°C).

This grade is an excellent substrate material for use with the various commercially available PVD coating processes. Conventional nitriding (.001" maximum depth) and steam tempering can also be used. Coating vendors should be consulted to select the optimum process for a given application.

Should be done warm (or during quench) using

temperatures in the range of 400°F (200°C) to 800°F

Care must be exercised during CVD and other surface treatment processes that can alter the original heat treatment of the tool.

TOOLING ALLOYS

Zapp Tooling Alloys, Inc.
475 International Circle
Summerville, South Carolina 29483
USA
Phone +1 843 871-2157
Fax +1 843 873-6649
Toll-free +1 888-9 BUY-ZAPP
ztasales@zapp.com

Further information regarding our products and locations are available in our image brochure and under www.zapp.com

The illustrations, drawings, dimensional and weight data and other information included in these data sheets are intended only for the purposes of describing our products and represent non-binding average values. They do not constitute quality data, nor can they be used as the basis for any guarantee of quality or durability. The applications presented serve only as illustrations and can be construed neither as quality data nor as a guarantee in relation to the suitability of the material. This cannot substitute for comprehensive consultation on the selection of our products and on their use in a specific application. The brochure is not subject to change control.

Last revision: December 2019